Sabtu, 27 Januari 2018

MEKANISME REAKSI SUBSTITUSI NUKLEOFILIK PADA ALKIL HALIDA

        Kimia organik bisa didefinisikan sebagai salah satu cabang ilmu kimia yang membahas mengenai struktur, sifat, komposisi, reaksi, dan sintesis senyawa organik (senyawa yang dibangun terutama oleh karbon dan hidrogen serta unsur-unsur lain seperti nitrogen, oksigen, fosfor, halogen, dan belerang). 
          Dalam kimia organik dikenal bermacam-macam reaksi, salah satu reaksinya adalah reaksi substitusi. Serupa sebutannya, reaksi ini merupakan reaksi pergantian antara unsur/gugus pada senyawa/molekul organik dengan unsur/gugus pada senyawa/molekul yang lain, mirip dengan pergantian pemain utama dan cadangan dalam sepak bola (misalnya). Unsur/gugus pengganti dalam reaksi substitusi dikenal sebagai gugus datang sementara unsur/gugus yang tergantikan dikenal sebagai gugus pergi. 
            Reaksi substitusi adalah reaksi penggantian atom atau gugus atom oleh atom atau gugus atom lain. Jadi dalam reaksi substutisu suatu atom atau gugus atom yang terdapat dalam rantai utama akan meninggalkan rantai utama tersebut dan tempatnya yang kosong akan diganti oleh atom atau gugus atom yang lain. Berdasarkan pereaksi yang yang dipergunakan, reaksi substitusi dapat dibedakan menjadi (a) reaksi substitusi radikal bebas; (b) reaksi substitusi nukleofilik; dan (c) reaksi substitusi elektrofilik.

            Reaksi substitusi adalah reaksi penggantian atom senyawa hidrokarbon oleh atom senyawa lain. Reaksi substitusi pada umumnya terjadi pada senyawa jenuh (alkana). Alkana dapat mengalami reaksi substitusi dengan halogen. Reaksi substitusi juga dapat diartikan sebagai  reaksi dimana berlangsung penggantian ikatan kovalen pada suatu atom karbon. Reagensia pengganti dan gugus lepas yang meninggalkan substrat dapat berupa nukleofil atau elektrofil (atau radikal bebas). Secara umum, reaksinya dapat dinyatakan sebagai berikut:      
 Reaksi secara umum:
R - H    +    X2    R X     +    H X

Mekanisme Reaksi Substitusi Nukleofilik Pada Alkil Halida
Reaksi Substitusi Nukleofilik Suatu nukleofil (Z:) menyerang alkil halida pada atom karbon hibrida-sp3 yang mengikat halogen (X), menyebabkan terusirnya halogen oleh nukleofil. Halogen yang terusir disebut gugus pergi. Nukleofil harus mengandung pasangan elektron bebas yang digunakan untuk membentuk ikatan baru dengan karbon. Hal ini memungkinkan gugus pergi terlepas dengan membawa pasangan elektron yang tadinya sebagai elektron ikatan. Ada dua persamaan umum yang dapat dituliskan: 


Pada umumnya terdapat dua mekanisme reaksi substitusi nukleofilik. Mereka dilambangkan dengan SN2 adan SN1. Bagian SN menunjukkan substitusi nukleofilik, sedangkan arti 1 dan 2 akan dijelaskan kemudian. 

1. Reaksi SN1
    Reaksi SN1 adalah sebuah reaksi substitusi dalam kimia organik. SN1 adalah singkatan dari substitusi nukleofil dan "1" memiliki arti bahwa tahap penetapan laju reaksi ini adalah reaksi molekul tunggal. Reaksi ini melibatkan sebuah zat antara karbokation dan umumnya terjadi pada reaksi alkil halida sekunder ataupun tersier, atau dalam keadaan asam yang kuat, alkohol sekunder, dan tersier. Dengan alkil halida primer, reaksi alternatif SN2 terjadi. Dalam kimia organik, SN1 dirujuk sebagai mekanisme disosiatif. Mekanisme reaksi ini pertama kali diajukan oleh Christopher Ingold, dkk. pada tahun 1940.

  SN1/substitusi nukleofilik unimolekuler mudah dikenali karena memiliki dua tahapan reaksi. Tahap pertama merupakan tahap “perginya” (baca, putus/lepas) si gugus pergi dari suatu senyawa/molekul yang nantinya akan digantikan oleh gugus datang. Gugus yang pergi ini tidak sendiri, ia pergi dengan membawa pasangan elektron ikatan. Akibatnya senyawa/molekul yang ditinggalkan mengalami kekurangan elektron. Dengan kata lain senyawa mengalami ionisasi sehingga bermuatan positif dan memiliki hibridisasi sp3 berbentuk segitiga planar/datar. Senyawa yang telah bermuatan positif cenderung labil (mudah bereaksi) ketika berada dalam “mode” ini. Karena itu gugus datang akan dengan mudah masuk dan membentuk ikatan dengan suatu senyawa. Masuknya gugus datang dapat terjadi melalui dua arah yang berbeda, karnanya produk hasil reaksi SN1 akan berupa rasemat/campuran enantiomer/senyawa sama namun letak gugus datang dalam ruang 3D-nya berbeda.



Berikut ini adalah ciri-ciri suatu reaksi yang berjalan melalui mekanisme SN1:
1. Kecapatan reaksinya tidak tergantung pada konsentrasi nukleofil. Tahap penentu kecepatan reaksi adalah tahap pertama di mana nukleofil tidak terlibat.
2. Jika karbon pembawa gugus pergi adalah bersifat kiral, reaksi menyebabkan hilangnya aktivitas optik karena terjadi rasemik. Pada ion karbonium, hanya ada a gugus yang terikat pada karbon positif. Karena itu, karbon positif mempunyai hibridisasi sp2 dan berbentuk planar. Jadi nukleofil mempunyai dua arah penyerangan, yaitu dari depan dan dari belakang. Dan kesempatan ini masing-masing mempunyai peluang 50 %. Jadi hasilnya adalah rasemit. Misalnya, reaksi (S)-3-bromo-3-metilheksana dengan air menghasilkan alkohol rasemik.
Spesies antaranya (intermediate species) adalah ion karbonium dengan geometrik planar sehingga air mempunyai peluang menyerang dari dua sisi (depan dan belakang) dengan peluang yang sama menghasilkan X yang melalui mekanisme SN1-adalah campuran rasemik Reaksi substrat R akan berlangsung cepat jika R merupakan struktur tersier, dan lambat jika R adalah struktur primer. Hal ini sesuai dengan urutan kestabilan ion karbonium, 3o > 2o >> 1o.

2. Reaksi SN2 
      Berbeda dengan SN1, reaksi SN2 (bimolekular) melibatkan dua gugus sekaligus selama proses substitusi berlansung. Artinya reaksi akan sangat dipengaruhi oleh kekuatan masing-masing gugus baik gugus datang maupun gugus pergi. Jika gugus yang datang merupakan pendonor elektron yang lebih baik dari gugus yang akan pergi, maka reaksi substitusi akan berlansung dengan mudah, sebaliknya jika gugus pergi cenderung lebih baik dari gugus datang maka reaksi akan cenderung lambat bahkan tidak berlansung sama sekali. 
  


Adapun ciri reaksi SN2 adalah: 
1. Karena nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi, maka kecepatan reaksi tergantung pada konsentrasi kedua spesies tersebut. 
2. Reaksi terjadi dengan pembalikan (inversi) konfigurasi. Misalnya jika kita mereaksikan (R)-2-bromobutana dengan natrium hidroksida, akan diperoleh (S)-2-butanol.Ion hidroksida menyerang dari belakang ikatan C-Br. Pada saat substitusi terjadi, ketiga gugus yang terikat pada karbon sp3 kiral itu seolah-olah terdorong oleh suatu bidang datar sehingga membalik. Karena dalam molekul ini OH mempunyai perioritas yang sama dengan Br, tentu hasilnya adalah (S)-2-butanol. Jadi reaksi SN2 memberikan hasil inversi. 
3. Jika substrat R-L bereaksi melalui mekanisme SN2, reaksi terjadi lebih cepat apabila R merupakan gugus metil atau primer, dan lambat jika R adalah gugus tersier. Gugus R sekunder mempunyai kecepatan pertengahan. Alasan untuk urutan ini adalah adanya efek rintangan sterik. Rintangan sterik gugus R meningkat dari metil < primer < sekunder < tersier. Jadi kecenderungan reaksi SN2 terjadi pada alkil halida adalah: metil > primer > sekunder >> tersier.



PERMASALAHAN

1. Pada mekanisme SN1 hanya satu dari dua pereaksi yang terlibat, yaitu substrat Sedangkan pada SN2 menyatakan bahwa reaksi adalah bimolekuler, yaitu nukleofil dan substrat, Nah bagaimanakah hal ini bisa terjadi,?

2. Mengapa  laju reaksi dari reaksi SN1 tidak tergantung pada konsentrasi nukleofil ? tolong jelaskan.

3. Bagaimana perbandingan mekanisme substitusi SN1dan SN2 dengan keadaan-keadaan lain, seperti keadan pelarut, struktur, dan nukleofil secara spesifik ? 



3 komentar:

  1. saya menjawab pertanyaan yang ke-1
    mekanisme SN2 merupakan suatu tahap reaksi, yaitu nukleofil menyerang dari belakang ikatan C-L. pada satu keadaan (keadaan peralihan) nukleofil dan gugus bebas semuanya berasosiai dengan karbon dimana substitusi terjadi. pada saat gugus bebas membawa serta elektronnya nukleofil memberikan pasangan elektron lain. lambang 2 digunakan untuk mekanisme kerja ini maka dari itu reaksi ini adalah bimolekuler atau dua molekul, yaitu nukleofil dan substrat terlibat dalam 2 tahap kunci(memang hanya satu-satunya tahap) dalam mekanisme reaksi. nukleofil menyerang dari balik gugus pergi (L). pada saat keadaan transisi, nukleofil dan gugus pergi terikat secara parsial pada atom karbon dengan membawa pasangan elektron ikatan, nukleofil memeberikan pasangan elektron ikatan dan menghasilkan produk tersubstitusi dengan konfigurasi inversi terhadap susbstratnya.

    BalasHapus
  2. Saya akan coba menjawab pertanyaan ke-2.
    Berbeda dengan reaksi SN2 kecepatan reaksinya bergantung pada kosentrasi nukleofilnya, sedangkan reaksi SN1 berjalan melalui dua tahap (tidak meliputi protonasi atau deprotonasi). Tahap penentu laju reaksi ada pada tahap pertama, oleh karena itu laju reaksi dari keseluruhan reaksi secara umum sama dengan laju pembentukan karbokation dan tidak melibatkan konsentrasi nukleofil. Oleh karena itu kenukleofilikan tidak menjadi faktor kelajuan reaksi dan laju keseluruhan reaksi hanya bergantung pada konsentarsi pereaksi.

    Laju reaksi = k [pereaksi]

    BalasHapus
  3. baiklah, saya akan mencoba menjawab pertanyaan ke-3
    pada dasarnya banyak hal yang dapat dijadikan pembanding seperti halnya struktur halida, pelarut dan nukleofilnya, berikut ini akan dijelaskan perbandingan mekanisme reaksi SN1 dan SN2, yakni sebagai berikut :

    1) mekanisme reaksi SN1
    struktur halida
    primer : terjadi
    sekunder: kadang-kadang
    tersier : tidak

    nukleofil : pada dasarnya mekanisme reaksi pada SN1 ini adalah tergantung pada konsentrasi nukleofil itu sendiri

    pelarut : sedangkan pelarut pada mekanisme reaksi SN1 ini adalah kecepatan reaksi sedikit dipengaruhi oleh kepolaran pelarut

    2) mekanisme reaksi SN2
    struktur halida
    primer : tidak
    sekunder : kadang-kadang
    tersier : terjadi

    nukleofil : pada dasarnya mekanisme reaksi tidak tergantung pada konsentrasi nukleofil

    pelarut : pada mekanisme reaksi SN2 ini kecepatan reaksi sangat dipengaruhi kepolaran pelarut

    BalasHapus

ANALISIS PEMBENTUKAN STRUKTUR SEKUNDER DAN TERSIER PADA PROTEIN

Protein itu tersusun atas peptida-peptida yang mana akan membentuk suatu polimer yang disebut polipeptida. Setiap monomernya ini tersusun ...